*/}}

la_tns_shaders.cpp 37 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114
  1. /*
  2. * LaGUI: A graphical application framework.
  3. * Copyright (C) 2022-2023 Wu Yiming
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. */
  18. #include "la_5.h"
  19. #ifdef LA_USE_GLES
  20. #define TNS_SHADER_VERSION "#version 320 es\n#define LA_USE_GLES"
  21. #else
  22. #define TNS_SHADER_VERSION "#version 430"
  23. #endif
  24. extern "C" const char* TNS_SHADER_COLOR_COMMON=R"(
  25. #define M_PI 3.1415926535897932384626433832795
  26. float rad(float d){ return d/180.0*M_PI; }
  27. float deg(float r){ return r*180.0/M_PI; }
  28. float cbrt( float x ){
  29. return sign(x)*pow(abs(x),1.0f/3.0f);
  30. }
  31. float srgb_transfer_function(float a){
  32. return .0031308f >= a ? 12.92f * a : 1.055f * pow(a, .4166666666666667f) - .055f;
  33. }
  34. float srgb_transfer_function_inv(float a){
  35. return .04045f < a ? pow((a + .055f) / 1.055f, 2.4f) : a / 12.92f;
  36. }
  37. vec3 to_log_srgb(vec3 color){
  38. return vec3(srgb_transfer_function(color.r),srgb_transfer_function(color.g),srgb_transfer_function(color.b));
  39. }
  40. vec3 to_linear_srgb(vec3 color){
  41. return vec3(srgb_transfer_function_inv(color.r),srgb_transfer_function_inv(color.g),srgb_transfer_function_inv(color.b));
  42. }
  43. vec3 to_linear_clay(vec3 color){
  44. return vec3(pow(color.r,2.19921875),pow(color.g,2.19921875),pow(color.b,2.19921875));
  45. }
  46. vec3 to_log_clay(vec3 color){
  47. return vec3(pow(color.r,1.0/2.19921875),pow(color.g,1.0/2.19921875),pow(color.b,1.0/2.19921875));
  48. }
  49. vec3 linear_srgb_to_oklab(vec3 c){
  50. float l = 0.4122214708f * c.r + 0.5363325363f * c.g + 0.0514459929f * c.b;
  51. float m = 0.2119034982f * c.r + 0.6806995451f * c.g + 0.1073969566f * c.b;
  52. float s = 0.0883024619f * c.r + 0.2817188376f * c.g + 0.6299787005f * c.b;
  53. float l_ = cbrt(l);
  54. float m_ = cbrt(m);
  55. float s_ = cbrt(s);
  56. return vec3(
  57. 0.2104542553f * l_ + 0.7936177850f * m_ - 0.0040720468f * s_,
  58. 1.9779984951f * l_ - 2.4285922050f * m_ + 0.4505937099f * s_,
  59. 0.0259040371f * l_ + 0.7827717662f * m_ - 0.8086757660f * s_
  60. );
  61. }
  62. vec3 oklab_to_linear_srgb(vec3 c){
  63. float l_ = c.x + 0.3963377774f * c.y + 0.2158037573f * c.z;
  64. float m_ = c.x - 0.1055613458f * c.y - 0.0638541728f * c.z;
  65. float s_ = c.x - 0.0894841775f * c.y - 1.2914855480f * c.z;
  66. float l = l_ * l_ * l_;
  67. float m = m_ * m_ * m_;
  68. float s = s_ * s_ * s_;
  69. return vec3(
  70. +4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s,
  71. -1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s,
  72. -0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s
  73. );
  74. }
  75. vec3 oklab_to_xyz(vec3 c){
  76. float l_ = c.x + 0.3963377774f * c.y + 0.2158037573f * c.z;
  77. float m_ = c.x - 0.1055613458f * c.y - 0.0638541728f * c.z;
  78. float s_ = c.x - 0.0894841775f * c.y - 1.2914855480f * c.z;
  79. float l = l_ * l_ * l_;
  80. float m = m_ * m_ * m_;
  81. float s = s_ * s_ * s_;
  82. mat3 mat=inverse(mat3(vec3(+0.8189330101,+0.0329845436,+0.0482003018),
  83. vec3(+0.3618667424,+0.9293118715,+0.2643662691),
  84. vec3(-0.1288597137,+0.0361456387,+0.6338517070)));
  85. return mat*vec3(l,m,s);
  86. }
  87. float compute_max_saturation(float a, float b){ float k0, k1, k2, k3, k4, wl, wm, ws;
  88. if (-1.88170328f * a - 0.80936493f * b > 1.f){ k0 = +1.19086277f; k1 = +1.76576728f; k2 = +0.59662641f; k3 = +0.75515197f; k4 = +0.56771245f;
  89. wl = +4.0767416621f; wm = -3.3077115913f; ws = +0.2309699292f;
  90. }
  91. else if (1.81444104f * a - 1.19445276f * b > 1.f){ k0 = +0.73956515f; k1 = -0.45954404f; k2 = +0.08285427f; k3 = +0.12541070f; k4 = +0.14503204f;
  92. wl = -1.2684380046f; wm = +2.6097574011f; ws = -0.3413193965f;
  93. }
  94. else{ k0 = +1.35733652f; k1 = -0.00915799f; k2 = -1.15130210f; k3 = -0.50559606f; k4 = +0.00692167f;
  95. wl = -0.0041960863f; wm = -0.7034186147f; ws = +1.7076147010f;
  96. } float S = k0 + k1 * a + k2 * b + k3 * a * a + k4 * a * b;
  97. float k_l = +0.3963377774f * a + 0.2158037573f * b;
  98. float k_m = -0.1055613458f * a - 0.0638541728f * b;
  99. float k_s = -0.0894841775f * a - 1.2914855480f * b;{
  100. float l_ = 1.f + S * k_l;
  101. float m_ = 1.f + S * k_m;
  102. float s_ = 1.f + S * k_s;
  103. float l = l_ * l_ * l_;
  104. float m = m_ * m_ * m_;
  105. float s = s_ * s_ * s_;
  106. float l_dS = 3.f * k_l * l_ * l_;
  107. float m_dS = 3.f * k_m * m_ * m_;
  108. float s_dS = 3.f * k_s * s_ * s_;
  109. float l_dS2 = 6.f * k_l * k_l * l_;
  110. float m_dS2 = 6.f * k_m * k_m * m_;
  111. float s_dS2 = 6.f * k_s * k_s * s_;
  112. float f = wl * l + wm * m + ws * s;
  113. float f1 = wl * l_dS + wm * m_dS + ws * s_dS;
  114. float f2 = wl * l_dS2 + wm * m_dS2 + ws * s_dS2;
  115. S = S - f * f1 / (f1 * f1 - 0.5f * f * f2);
  116. }
  117. return S;
  118. }
  119. vec2 find_cusp(float a, float b){ float S_cusp = compute_max_saturation(a, b); vec3 rgb_at_max = oklab_to_linear_srgb(vec3( 1, S_cusp * a, S_cusp * b ));
  120. float L_cusp = cbrt(1.f / max(max(rgb_at_max.r, rgb_at_max.g), rgb_at_max.b));
  121. float C_cusp = L_cusp * S_cusp;
  122. return vec2( L_cusp , C_cusp );
  123. }
  124. float find_gamut_intersection(float a, float b, float L1, float C1, float L0, vec2 cusp){ float t;
  125. if (((L1 - L0) * cusp.y - (cusp.x - L0) * C1) <= 0.f){
  126. t = cusp.y * L0 / (C1 * cusp.x + cusp.y * (L0 - L1));
  127. }
  128. else{ t = cusp.y * (L0 - 1.f) / (C1 * (cusp.x - 1.f) + cusp.y * (L0 - L1)); {
  129. float dL = L1 - L0;
  130. float dC = C1;
  131. float k_l = +0.3963377774f * a + 0.2158037573f * b;
  132. float k_m = -0.1055613458f * a - 0.0638541728f * b;
  133. float k_s = -0.0894841775f * a - 1.2914855480f * b;
  134. float l_dt = dL + dC * k_l;
  135. float m_dt = dL + dC * k_m;
  136. float s_dt = dL + dC * k_s; {
  137. float L = L0 * (1.f - t) + t * L1;
  138. float C = t * C1;
  139. float l_ = L + C * k_l;
  140. float m_ = L + C * k_m;
  141. float s_ = L + C * k_s;
  142. float l = l_ * l_ * l_;
  143. float m = m_ * m_ * m_;
  144. float s = s_ * s_ * s_;
  145. float ldt = 3.f * l_dt * l_ * l_;
  146. float mdt = 3.f * m_dt * m_ * m_;
  147. float sdt = 3.f * s_dt * s_ * s_;
  148. float ldt2 = 6.f * l_dt * l_dt * l_;
  149. float mdt2 = 6.f * m_dt * m_dt * m_;
  150. float sdt2 = 6.f * s_dt * s_dt * s_;
  151. float r = 4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s - 1.f;
  152. float r1 = 4.0767416621f * ldt - 3.3077115913f * mdt + 0.2309699292f * sdt;
  153. float r2 = 4.0767416621f * ldt2 - 3.3077115913f * mdt2 + 0.2309699292f * sdt2;
  154. float u_r = r1 / (r1 * r1 - 0.5f * r * r2);
  155. float t_r = -r * u_r;
  156. float g = -1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s - 1.f;
  157. float g1 = -1.2684380046f * ldt + 2.6097574011f * mdt - 0.3413193965f * sdt;
  158. float g2 = -1.2684380046f * ldt2 + 2.6097574011f * mdt2 - 0.3413193965f * sdt2;
  159. float u_g = g1 / (g1 * g1 - 0.5f * g * g2);
  160. float t_g = -g * u_g;
  161. float b = -0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s - 1.f;
  162. float b1 = -0.0041960863f * ldt - 0.7034186147f * mdt + 1.7076147010f * sdt;
  163. float b2 = -0.0041960863f * ldt2 - 0.7034186147f * mdt2 + 1.7076147010f * sdt2;
  164. float u_b = b1 / (b1 * b1 - 0.5f * b * b2);
  165. float t_b = -b * u_b;
  166. t_r = u_r >= 0.f ? t_r : 10000.f;
  167. t_g = u_g >= 0.f ? t_g : 10000.f;
  168. t_b = u_b >= 0.f ? t_b : 10000.f;
  169. t += min(t_r, min(t_g, t_b));
  170. }
  171. }
  172. }
  173. return t;
  174. }
  175. float find_gamut_intersection(float a, float b, float L1, float C1, float L0){ vec2 cusp = find_cusp(a, b);
  176. return find_gamut_intersection(a, b, L1, C1, L0, cusp);
  177. }
  178. vec3 gamut_clip_preserve_chroma(vec3 rgb){
  179. if (rgb.r < 1.f && rgb.g < 1.f && rgb.b < 1.f && rgb.r > 0.f && rgb.g > 0.f && rgb.b > 0.f)
  180. return rgb;
  181. vec3 lab = linear_srgb_to_oklab(rgb);
  182. float L = lab.x;
  183. float eps = 0.00001f;
  184. float C = max(eps, sqrt(lab.y * lab.y + lab.z * lab.z));
  185. float a_ = lab.y / C;
  186. float b_ = lab.z / C;
  187. float L0 = clamp(L, 0.f, 1.f);
  188. float t = find_gamut_intersection(a_, b_, L, C, L0);
  189. float L_clipped = L0 * (1.f - t) + t * L;
  190. float C_clipped = t * C;
  191. return oklab_to_linear_srgb(vec3( L_clipped, C_clipped * a_, C_clipped * b_ ));
  192. }
  193. vec3 gamut_clip_project_to_0_5(vec3 rgb){
  194. if (rgb.r < 1.f && rgb.g < 1.f && rgb.b < 1.f && rgb.r > 0.f && rgb.g > 0.f && rgb.b > 0.f)
  195. return rgb;
  196. vec3 lab = linear_srgb_to_oklab(rgb);
  197. float L = lab.x;
  198. float eps = 0.00001f;
  199. float C = max(eps, sqrt(lab.y * lab.y + lab.z * lab.z));
  200. float a_ = lab.y / C;
  201. float b_ = lab.z / C;
  202. float L0 = 0.5;
  203. float t = find_gamut_intersection(a_, b_, L, C, L0);
  204. float L_clipped = L0 * (1.f - t) + t * L;
  205. float C_clipped = t * C;
  206. return oklab_to_linear_srgb(vec3( L_clipped, C_clipped * a_, C_clipped * b_ ));
  207. }
  208. vec3 gamut_clip_project_to_L_cusp(vec3 rgb){
  209. if (rgb.r < 1.f && rgb.g < 1.f && rgb.b < 1.f && rgb.r > 0.f && rgb.g > 0.f && rgb.b > 0.f)
  210. return rgb;
  211. vec3 lab = linear_srgb_to_oklab(rgb);
  212. float L = lab.x;
  213. float eps = 0.00001f;
  214. float C = max(eps, sqrt(lab.y * lab.y + lab.z * lab.z));
  215. float a_ = lab.y / C;
  216. float b_ = lab.z / C; vec2 cusp = find_cusp(a_, b_);
  217. float L0 = cusp.x;
  218. float t = find_gamut_intersection(a_, b_, L, C, L0);
  219. float L_clipped = L0 * (1.f - t) + t * L;
  220. float C_clipped = t * C;
  221. return oklab_to_linear_srgb(vec3( L_clipped, C_clipped * a_, C_clipped * b_ ));
  222. }
  223. vec3 gamut_clip_adaptive_L0_0_5(vec3 rgb, float alpha){
  224. if (rgb.r < 1.f && rgb.g < 1.f && rgb.b < 1.f && rgb.r > 0.f && rgb.g > 0.f && rgb.b > 0.f)
  225. return rgb;
  226. vec3 lab = linear_srgb_to_oklab(rgb);
  227. float L = lab.x;
  228. float eps = 0.00001f;
  229. float C = max(eps, sqrt(lab.y * lab.y + lab.z * lab.z));
  230. float a_ = lab.y / C;
  231. float b_ = lab.z / C;
  232. float Ld = L - 0.5f;
  233. float e1 = 0.5f + abs(Ld) + alpha * C;
  234. float L0 = 0.5f * (1.f + sign(Ld) * (e1 - sqrt(e1 * e1 - 2.f * abs(Ld))));
  235. float t = find_gamut_intersection(a_, b_, L, C, L0);
  236. float L_clipped = L0 * (1.f - t) + t * L;
  237. float C_clipped = t * C;
  238. return oklab_to_linear_srgb(vec3( L_clipped, C_clipped * a_, C_clipped * b_ ));
  239. }
  240. vec3 gamut_clip_adaptive_L0_L_cusp(vec3 rgb, float alpha){
  241. if (rgb.r < 1.f && rgb.g < 1.f && rgb.b < 1.f && rgb.r > 0.f && rgb.g > 0.f && rgb.b > 0.f)
  242. return rgb;
  243. vec3 lab = linear_srgb_to_oklab(rgb);
  244. float L = lab.x;
  245. float eps = 0.00001f;
  246. float C = max(eps, sqrt(lab.y * lab.y + lab.z * lab.z));
  247. float a_ = lab.y / C;
  248. float b_ = lab.z / C; vec2 cusp = find_cusp(a_, b_);
  249. float Ld = L - cusp.x;
  250. float k = 2.f * (Ld > 0.f ? 1.f - cusp.x : cusp.x);
  251. float e1 = 0.5f * k + abs(Ld) + alpha * C / k;
  252. float L0 = cusp.x + 0.5f * (sign(Ld) * (e1 - sqrt(e1 * e1 - 2.f * k * abs(Ld))));
  253. float t = find_gamut_intersection(a_, b_, L, C, L0);
  254. float L_clipped = L0 * (1.f - t) + t * L;
  255. float C_clipped = t * C;
  256. return oklab_to_linear_srgb(vec3( L_clipped, C_clipped * a_, C_clipped * b_ ));
  257. }
  258. float toe(float x){
  259. float k_1 = 0.206f;
  260. float k_2 = 0.03f;
  261. float k_3 = (1.f + k_1) / (1.f + k_2);
  262. return 0.5f * (k_3 * x - k_1 + sqrt((k_3 * x - k_1) * (k_3 * x - k_1) + 4.f * k_2 * k_3 * x));
  263. }
  264. float toe_inv(float x){
  265. float k_1 = 0.206f;
  266. float k_2 = 0.03f;
  267. float k_3 = (1.f + k_1) / (1.f + k_2);
  268. return (x * x + k_1 * x) / (k_3 * (x + k_2));
  269. }
  270. vec2 to_ST(vec2 cusp){
  271. float L = cusp.x;
  272. float C = cusp.y;
  273. return vec2( C / L, C / (1.f - L) );
  274. }
  275. vec2 get_ST_mid(float a_, float b_){
  276. float S = 0.11516993f + 1.f / (
  277. +7.44778970f + 4.15901240f * b_
  278. + a_ * (-2.19557347f + 1.75198401f * b_
  279. + a_ * (-2.13704948f - 10.02301043f * b_
  280. + a_ * (-4.24894561f + 5.38770819f * b_ + 4.69891013f * a_
  281. )))
  282. );
  283. float T = 0.11239642f + 1.f / (
  284. +1.61320320f - 0.68124379f * b_
  285. + a_ * (+0.40370612f + 0.90148123f * b_
  286. + a_ * (-0.27087943f + 0.61223990f * b_
  287. + a_ * (+0.00299215f - 0.45399568f * b_ - 0.14661872f * a_
  288. )))
  289. );
  290. return vec2( S, T );
  291. }
  292. vec3 get_Cs(float L, float a_, float b_){
  293. vec2 cusp = find_cusp(a_, b_);
  294. float C_max = find_gamut_intersection(a_, b_, L, 1.f, L, cusp);
  295. vec2 ST_max = to_ST(cusp); float k = C_max / min((L * ST_max.x), (1.f - L) * ST_max.y);
  296. float C_mid;{
  297. vec2 ST_mid = get_ST_mid(a_, b_); float C_a = L * ST_mid.x;
  298. float C_b = (1.f - L) * ST_mid.y;
  299. C_mid = 0.9f * k * sqrt(sqrt(1.f / (1.f / (C_a * C_a * C_a * C_a) + 1.f / (C_b * C_b * C_b * C_b))));
  300. }
  301. float C_0;{ float C_a = L * 0.4f;
  302. float C_b = (1.f - L) * 0.8f; C_0 = sqrt(1.f / (1.f / (C_a * C_a) + 1.f / (C_b * C_b)));
  303. }
  304. return vec3( C_0, C_mid, C_max );
  305. }
  306. vec3 okhsl_to_srgb(vec3 hsl){
  307. float h = hsl.x;
  308. float s = hsl.y;
  309. float l = hsl.z;
  310. if (l == 1.0f){
  311. return vec3( 1.f, 1.f, 1.f );
  312. }
  313. else if (l == 0.f){
  314. return vec3( 0.f, 0.f, 0.f );
  315. }
  316. float a_ = cos(2.f * M_PI * h);
  317. float b_ = sin(2.f * M_PI * h);
  318. float L = toe_inv(l);
  319. vec3 cs = get_Cs(L, a_, b_);
  320. float C_0 = cs.x;
  321. float C_mid = cs.y;
  322. float C_max = cs.z;
  323. float mid = 0.8f;
  324. float mid_inv = 1.25f;
  325. float C, t, k_0, k_1, k_2;
  326. if (s < mid){
  327. t = mid_inv * s;
  328. k_1 = mid * C_0;
  329. k_2 = (1.f - k_1 / C_mid);
  330. C = t * k_1 / (1.f - k_2 * t);
  331. }
  332. else{
  333. t = (s - mid)/ (1.f - mid);
  334. k_0 = C_mid;
  335. k_1 = (1.f - mid) * C_mid * C_mid * mid_inv * mid_inv / C_0;
  336. k_2 = (1.f - (k_1) / (C_max - C_mid));
  337. C = k_0 + t * k_1 / (1.f - k_2 * t);
  338. }
  339. vec3 rgb = oklab_to_linear_srgb(vec3( L, C * a_, C * b_ ));
  340. return vec3(
  341. srgb_transfer_function(rgb.r),
  342. srgb_transfer_function(rgb.g),
  343. srgb_transfer_function(rgb.b)
  344. );
  345. }
  346. vec3 okhsl_to_linear_srgb(vec3 hsl){
  347. float h = hsl.x;
  348. float s = hsl.y;
  349. float l = hsl.z;
  350. if (l == 1.0f){
  351. return vec3( 1.f, 1.f, 1.f );
  352. }
  353. else if (l == 0.f){
  354. return vec3( 0.f, 0.f, 0.f );
  355. }
  356. float a_ = cos(2.f * M_PI * h);
  357. float b_ = sin(2.f * M_PI * h);
  358. float L = toe_inv(l);
  359. vec3 cs = get_Cs(L, a_, b_);
  360. float C_0 = cs.x;
  361. float C_mid = cs.y;
  362. float C_max = cs.z;
  363. float mid = 0.8f;
  364. float mid_inv = 1.25f;
  365. float C, t, k_0, k_1, k_2;
  366. if (s < mid){
  367. t = mid_inv * s;
  368. k_1 = mid * C_0;
  369. k_2 = (1.f - k_1 / C_mid);
  370. C = t * k_1 / (1.f - k_2 * t);
  371. }
  372. else{
  373. t = (s - mid)/ (1.f - mid);
  374. k_0 = C_mid;
  375. k_1 = (1.f - mid) * C_mid * C_mid * mid_inv * mid_inv / C_0;
  376. k_2 = (1.f - (k_1) / (C_max - C_mid));
  377. C = k_0 + t * k_1 / (1.f - k_2 * t);
  378. }
  379. return oklab_to_linear_srgb(vec3( L, C * a_, C * b_ ));
  380. }
  381. vec3 okhsl_to_xyz(vec3 hsl){
  382. float h = hsl.x;
  383. float s = hsl.y;
  384. float l = hsl.z;
  385. if (l == 1.0f){
  386. return vec3( 1.f, 1.f, 1.f );
  387. }
  388. else if (l == 0.f){
  389. return vec3( 0.f, 0.f, 0.f );
  390. }
  391. float a_ = cos(2.f * M_PI * h);
  392. float b_ = sin(2.f * M_PI * h);
  393. float L = toe_inv(l);
  394. vec3 cs = get_Cs(L, a_, b_);
  395. float C_0 = cs.x;
  396. float C_mid = cs.y;
  397. float C_max = cs.z;
  398. float mid = 0.8f;
  399. float mid_inv = 1.25f;
  400. float C, t, k_0, k_1, k_2;
  401. if (s < mid){
  402. t = mid_inv * s;
  403. k_1 = mid * C_0;
  404. k_2 = (1.f - k_1 / C_mid);
  405. C = t * k_1 / (1.f - k_2 * t);
  406. }
  407. else{
  408. t = (s - mid)/ (1.f - mid);
  409. k_0 = C_mid;
  410. k_1 = (1.f - mid) * C_mid * C_mid * mid_inv * mid_inv / C_0;
  411. k_2 = (1.f - (k_1) / (C_max - C_mid));
  412. C = k_0 + t * k_1 / (1.f - k_2 * t);
  413. }
  414. return oklab_to_xyz(vec3( L, C * a_, C * b_ ));
  415. }
  416. vec3 srgb_to_okhsl(vec3 rgb){
  417. vec3 lab = linear_srgb_to_oklab(vec3(
  418. srgb_transfer_function_inv(rgb.r),
  419. srgb_transfer_function_inv(rgb.g),
  420. srgb_transfer_function_inv(rgb.b)
  421. ));
  422. float C = sqrt(lab.y * lab.y + lab.z * lab.z);
  423. float a_ = lab.y / C;
  424. float b_ = lab.z / C;
  425. float L = lab.x;
  426. float h = 0.5f + 0.5f * atan(-lab.z, -lab.y) / M_PI;
  427. vec3 cs = get_Cs(L, a_, b_);
  428. float C_0 = cs.x;
  429. float C_mid = cs.y;
  430. float C_max = cs.z;
  431. float mid = 0.8f;
  432. float mid_inv = 1.25f;
  433. float s;
  434. if (C < C_mid){
  435. float k_1 = mid * C_0;
  436. float k_2 = (1.f - k_1 / C_mid);
  437. float t = C / (k_1 + k_2 * C);
  438. s = t * mid;
  439. }
  440. else{
  441. float k_0 = C_mid;
  442. float k_1 = (1.f - mid) * C_mid * C_mid * mid_inv * mid_inv / C_0;
  443. float k_2 = (1.f - (k_1) / (C_max - C_mid));
  444. float t = (C - k_0) / (k_1 + k_2 * (C - k_0));
  445. s = mid + (1.f - mid) * t;
  446. }
  447. float l = toe(L);
  448. return vec3( h, s, l );
  449. }
  450. vec3 okhsv_to_srgb(vec3 hsv){
  451. float h = hsv.x;
  452. float s = hsv.y;
  453. float v = hsv.z;
  454. float a_ = cos(2.f * M_PI * h);
  455. float b_ = sin(2.f * M_PI * h);
  456. vec2 cusp = find_cusp(a_, b_);
  457. vec2 ST_max = to_ST(cusp);
  458. float S_max = ST_max.x;
  459. float T_max = ST_max.y;
  460. float S_0 = 0.5f;
  461. float k = 1.f- S_0 / S_max; float L_v = 1.f - s * S_0 / (S_0 + T_max - T_max * k * s);
  462. float C_v = s * T_max * S_0 / (S_0 + T_max - T_max * k * s);
  463. float L = v * L_v;
  464. float C = v * C_v; float L_vt = toe_inv(L_v);
  465. float C_vt = C_v * L_vt / L_v;
  466. float L_new = toe_inv(L);
  467. C = C * L_new / L;
  468. L = L_new;
  469. vec3 rgb_scale = oklab_to_linear_srgb(vec3( L_vt, a_ * C_vt, b_ * C_vt ));
  470. float scale_L = cbrt(1.f / max(max(rgb_scale.r, rgb_scale.g), max(rgb_scale.b, 0.f)));
  471. L = L * scale_L;
  472. C = C * scale_L;
  473. vec3 rgb = oklab_to_linear_srgb(vec3( L, C * a_, C * b_ ));
  474. return vec3(
  475. srgb_transfer_function(rgb.r),
  476. srgb_transfer_function(rgb.g),
  477. srgb_transfer_function(rgb.b)
  478. );
  479. })" R"(
  480. vec3 srgb_to_okhsv(vec3 rgb){
  481. vec3 lab = linear_srgb_to_oklab(vec3(
  482. srgb_transfer_function_inv(rgb.r),
  483. srgb_transfer_function_inv(rgb.g),
  484. srgb_transfer_function_inv(rgb.b)
  485. ));
  486. float C = sqrt(lab.y * lab.y + lab.z * lab.z);
  487. float a_ = lab.y / C;
  488. float b_ = lab.z / C;
  489. float L = lab.x;
  490. float h = 0.5f + 0.5f * atan(-lab.z, -lab.y) / M_PI;
  491. vec2 cusp = find_cusp(a_, b_);
  492. vec2 ST_max = to_ST(cusp);
  493. float S_max = ST_max.x;
  494. float T_max = ST_max.y;
  495. float S_0 = 0.5f;
  496. float k = 1.f - S_0 / S_max;
  497. float t = T_max / (C + L * T_max);
  498. float L_v = t * L;
  499. float C_v = t * C;
  500. float L_vt = toe_inv(L_v);
  501. float C_vt = C_v * L_vt / L_v; vec3 rgb_scale = oklab_to_linear_srgb(vec3( L_vt, a_ * C_vt, b_ * C_vt ));
  502. float scale_L = cbrt(1.f / max(max(rgb_scale.r, rgb_scale.g), max(rgb_scale.b, 0.f)));
  503. L = L / scale_L;
  504. C = C / scale_L;
  505. C = C * toe(L) / L;
  506. L = toe(L);
  507. float v = L / L_v;
  508. float s = (S_0 + T_max) * C_v / ((T_max * S_0) + T_max * k * C_v);
  509. return vec3 (h, s, v );
  510. }
  511. vec3 sRGB2XYZ(vec3 color){
  512. mat3 mat=mat3(vec3(0.4124564,0.3575761,0.1804375),
  513. vec3(0.2126729,0.7151522,0.0721750),
  514. vec3(0.0193339,0.1191920,0.9503041));
  515. return color*mat;
  516. }
  517. vec3 Clay2XYZ(vec3 color){
  518. mat3 mat=mat3(vec3(0.5767309,0.1855540,0.1881852),
  519. vec3(0.2973769,0.6273491,0.0752741),
  520. vec3(0.0270343,0.0706872,0.9911085));
  521. return color*mat;
  522. }
  523. vec3 D65P32XYZ(vec3 color){
  524. mat3 mat=mat3(vec3(0.4865709,0.2656677,0.1982173),
  525. vec3(0.2289746,0.6917385,0.0792869),
  526. vec3(0.0000000,0.0451134,1.0439444));
  527. return color*mat;
  528. }
  529. vec3 XYZ2sRGB(vec3 xyz){
  530. mat3 mat=mat3(vec3(3.2404542,-1.5371385,-0.4985314),
  531. vec3(-0.9692660,1.8760108,0.0415560),
  532. vec3(0.0556434,-0.2040259,1.0572252));
  533. return xyz*mat;
  534. }
  535. vec3 XYZ2Clay(vec3 xyz){
  536. mat3 mat=mat3(vec3(2.0413690,-0.5649464,-0.3446944),
  537. vec3(-0.9692660,1.8760108,0.0415560),
  538. vec3(0.0134474,-0.1183897,1.0154096));
  539. return xyz*mat;
  540. }
  541. vec3 XYZ2D65P3(vec3 xyz){
  542. mat3 mat=mat3(vec3(2.4934969,-0.9313836,-0.4027108),
  543. vec3(-0.8294890,1.7626641,0.0236247),
  544. vec3(0.0358458,-0.0761724,0.9568845));
  545. return xyz*mat;
  546. }
  547. vec3 YUV2sRGB(vec3 yuv){
  548. yuv[0]=1.1643*(yuv[0]-0.0625);
  549. yuv[1]-=0.5; yuv[2]-=0.5;
  550. vec3 rgb;
  551. rgb[0] = (yuv[0] + 1.793 * yuv[2]);
  552. rgb[1] = (yuv[0] - 0.213 * yuv[1] - 0.533 * yuv[2]);
  553. rgb[2] = (yuv[0] + 2.112 * yuv[1]);
  554. return rgb;
  555. }
  556. #define htsize HalftoneSize
  557. vec4 rgb2cmyk(vec3 rgb){
  558. vec4 cmyk; cmyk.w=1.-max(max(rgb.r,rgb.g),rgb.b);
  559. float k1=1.-cmyk.w;
  560. cmyk.r=(k1-rgb.r)/k1; cmyk.g=(k1-rgb.g)/k1; cmyk.b=(k1-rgb.b)/k1;
  561. return cmyk;
  562. }
  563. vec3 cmyk2rgb(vec4 cmyk){
  564. vec3 rgb; float k1=1.-cmyk.w;
  565. rgb.r=(1.-cmyk.r)*k1; rgb.g=(1.-cmyk.g)*k1; rgb.b=(1.-cmyk.b)*k1;
  566. return rgb;
  567. }
  568. float rand(vec2 co){
  569. return fract(sin(dot(co, vec2(12.9898, 78.233))) * 43758.5453);
  570. }
  571. float HalftoneSingle(float a,float ps,float theta,float sm){
  572. float psize=ps; vec2 ctr=vec2(psize/2.,psize/2.); vec2 pt=vec2(psize,psize);
  573. vec2 xy=gl_FragCoord.xy; xy=vec2(sin(theta)*xy.x-cos(theta)*xy.y,cos(theta)*xy.x+sin(theta)*xy.y);
  574. xy.x=xy.x+rand(xy)/1.; xy.y=xy.y+rand(xy)/1.; ivec2 xyi=ivec2(int(xy.x/psize),int(xy.y/psize));
  575. vec2 xyf=mod(xy,pt);
  576. float px1=(sm==1.)?(3.0f/psize):(0.000001);
  577. float cmp=(pow(a,1.)*psize/2.*(1.414+px1)); float fac=distance(xyf,ctr)/cmp;
  578. return smoothstep(1.+px1,1.-px1,fac);
  579. }
  580. vec4 halftone(vec4 color){
  581. vec4 cmyk=rgb2cmyk(color.rgb); float a=color.a*(gl_FragCoord.x/400.0f);
  582. cmyk.r=HalftoneSingle(cmyk.r,htsize,rad(15.0),1.);
  583. cmyk.g=HalftoneSingle(cmyk.g,htsize,rad(75.0),1.);
  584. cmyk.b=HalftoneSingle(cmyk.b,htsize,rad(0.),1.);
  585. cmyk.a=HalftoneSingle(cmyk.a,htsize,rad(45.0),1.);
  586. color.rgb=cmyk2rgb(cmyk);
  587. //color.a=HalftoneSingle(a,htsize,rad(30),0);
  588. return color;
  589. }
  590. )";
  591. extern "C" const char* TNS_VERTEX_SIMPLE_MATCAP = TNS_SHADER_VERSION R"(
  592. precision highp float;
  593. uniform mat4 mProjection;
  594. uniform mat4 mModel;
  595. uniform mat4 mView;
  596. in vec4 vVertex;
  597. in vec3 vNormal;
  598. smooth out vec3 fNormal;
  599. void main(){
  600. gl_Position = mProjection * mView * mModel * vVertex;
  601. vec3 N = ( mView * mModel * vec4(vNormal,0)).xyz;
  602. fNormal = normalize(N);
  603. })";
  604. extern "C" const char* TNS_FRAGMENT_SIMPLE_MATCAP = TNS_SHADER_VERSION R"(
  605. precision highp float;
  606. smooth in vec3 fNormal;
  607. out vec4 outColor;
  608. float Interpolate(float between1,float between2,float value1,float value2,float key){
  609. float i = (key-between1)/(between2-between1);
  610. return value1*(1.-i)+value2*i;
  611. }
  612. void main(){
  613. float value = dot(vec3(0,0,1),fNormal);
  614. if(value<0.65) value=0.15;
  615. else if(value>=0.65 && value<0.85) value=Interpolate(0.65,0.85,0.15,0.75,value);
  616. else if(value>=0.85 && value<0.95) value=0.75;
  617. else if(value>=0.95) value=0.9;
  618. outColor = vec4(vec3(0.84, 0.41, 0.16)*value,1);
  619. })";
  620. extern "C" const char* TNS_VERTEX_GRID = TNS_SHADER_VERSION R"(
  621. precision highp float;
  622. uniform mat4 mProjection;
  623. uniform mat4 mModel;
  624. uniform mat4 mView;
  625. in vec4 vVertex;
  626. in vec4 vColor;
  627. in vec2 vUV;
  628. out vec4 fColor;
  629. out vec2 uv;
  630. void main(){
  631. vec4 pos = mProjection * mView * mModel * vVertex;
  632. gl_Position = pos;
  633. fColor = vColor;
  634. uv = vUV;
  635. })";
  636. extern "C" const char* TNS_FRAGMENT_TRANSPARNT_GRID = TNS_SHADER_VERSION R"(
  637. precision highp float;
  638. in vec4 fColor;
  639. in vec2 uv;
  640. out vec4 outColor;
  641. void main(){
  642. vec4 c = fColor;
  643. c.a = sin(uv.x)*sin(uv.y)>0.?c.a:0.;
  644. outColor = c;
  645. })";
  646. extern "C" const char* LA_IMM_VERTEX_SHADER = TNS_SHADER_VERSION R"(
  647. precision highp float;
  648. uniform mat4 mProjection;
  649. uniform mat4 mModel;
  650. uniform mat4 mView;
  651. uniform int DoOffset;
  652. in vec4 vVertex;
  653. in vec4 vColor;
  654. in vec3 vNormal;
  655. in vec2 vUV;
  656. out vec4 fColor;
  657. out vec2 fUV;
  658. flat out vec3 fNormal;
  659. out vec3 fGPos;
  660. void main(){
  661. vec4 pos=mProjection * mView * mModel * vVertex;
  662. if(DoOffset!=0){ pos.xyw*=1.0+0.00005*float(DoOffset); }
  663. gl_Position = pos;
  664. fColor = vColor;
  665. fUV=vUV;
  666. fGPos=vec3((mModel * vVertex).xyz);
  667. fNormal= normalize((mModel * vec4(vNormal,0.)).xyz);
  668. })";
  669. extern "C" const char* LA_IMM_FRAGMENT_SHADER = TNS_SHADER_VERSION R"(
  670. #ifndef LA_USE_GLES
  671. #extension GL_ARB_shading_language_420pack : enable // uniform sampler binding
  672. #endif
  673. precision highp float;
  674. precision highp int;
  675. layout (binding=0) uniform highp sampler2D TexColor;
  676. layout (binding=1) uniform highp sampler2DMS TexColorMS;
  677. layout (binding=2) uniform highp usampler2D TexColorUI;
  678. layout (binding=3) uniform highp sampler3D TexLut;
  679. layout (binding=4) uniform highp sampler2D TexColor2;
  680. layout (binding=5) uniform highp usampler2D TexColorUI2;
  681. uniform int TexIsUI;
  682. uniform int Tex2IsUI;
  683. uniform int TexPremultiplied;
  684. uniform int UseLut;
  685. uniform int TextureMode;
  686. uniform int ColorMode;
  687. uniform int MultiplyColor;
  688. uniform int SampleAmount;
  689. uniform int UseNormal;
  690. uniform float UseHalftone;
  691. uniform float HalftoneSize;
  692. uniform int InputColorSpace;
  693. uniform int OutputColorSpace;
  694. uniform int Composing;
  695. uniform float ComposingGamma;
  696. uniform float ComposingBlackpoint;
  697. uniform int ShowStripes;
  698. uniform float HCYGamma;
  699. uniform vec3 uObjectPos;
  700. uniform vec3 uViewPos;
  701. uniform vec3 uViewDir;
  702. in vec4 fColor;
  703. in vec2 fUV;
  704. flat in vec3 fNormal;
  705. in vec3 fGPos;
  706. layout(location = 0) out vec4 outColor;
  707. layout(location = 1) out vec3 outNormal;
  708. layout(location = 2) out vec3 outGPos;
  709. #with TNS_SHADER_COLOR_COMMON
  710. #with TNS_SHADER_LIBRARY
  711. #with TNS_GLES_UINT_TEXTURE
  712. vec4 ConvertColorSpace(vec4 _rgba){
  713. vec3 color=_rgba.rgb;
  714. if(InputColorSpace!=OutputColorSpace){
  715. if(ColorMode==0){
  716. if(InputColorSpace==0) color=to_linear_srgb(color);
  717. else if(InputColorSpace==1) color=to_linear_clay(color);
  718. else if(InputColorSpace==2) color=to_linear_srgb(color);
  719. }
  720. vec3 xyz; if(ColorMode==1){ color.y=pow(color.y,max(HCYGamma,1.)); color=okhsl_to_linear_srgb(color); }
  721. if(InputColorSpace==1){ xyz=Clay2XYZ(color); }
  722. else if(InputColorSpace==0){ xyz=sRGB2XYZ(color); }
  723. else if(InputColorSpace==2){ xyz=D65P32XYZ(color); }
  724. if(OutputColorSpace==0){ color=to_log_srgb(XYZ2sRGB(xyz)); /*_rgba.a=srgb_transfer_function(_rgba.a);*/ }
  725. else if(OutputColorSpace==1){ color=to_log_clay(XYZ2Clay(xyz)); /*_rgba.a=pow(_rgba.a,1.0/2.19921875);*/ }
  726. else if(OutputColorSpace==2){ color=to_log_srgb(XYZ2D65P3(xyz)); /*_rgba.a=pow(_rgba.a,1.0/2.19921875);*/ }
  727. }else{
  728. if(ColorMode==1){ color.y=pow(color.y,max(HCYGamma,1.)); color=okhsl_to_srgb(color); }
  729. else if(ColorMode==0){
  730. color = color;
  731. }else{
  732. if(OutputColorSpace==0){ color=to_log_srgb(color); /*_rgba.a=srgb_transfer_function(_rgba.a);*/ }
  733. else if(OutputColorSpace==1){ color=to_log_clay(color); /*_rgba.a=pow(_rgba.a,1.0/2.19921875);*/ }
  734. else if(OutputColorSpace==2){ color=to_log_srgb(color); /*_rgba.a=pow(_rgba.a,1.0/2.19921875);*/ }
  735. }
  736. }
  737. if(ShowStripes!=0){
  738. if(color.r>1.00001||color.g>1.00001||color.b>1.00001||color.r<0.||color.g<0.||color.b<0.){ color=mix(color,vec3(0.5,0.5,0.5),(sin((gl_FragCoord.x+gl_FragCoord.y)/2.)>0.)?1.:0.5); }
  739. }
  740. return vec4(color,_rgba.a);
  741. }
  742. #ifdef GLES_UINT_TEXTURE
  743. vec4 cunpack(uint d){
  744. return vec4(float(d&0xFFu)/255.,float((d>>8u)&0xFFu)/255.,float((d>>16u)&0xFFu)/255.,float((d>>24u)&0xFFu)/255.);
  745. }
  746. #endif
  747. #ifdef GLES_UINT_TEXTURE
  748. #define textureUI(sampler,uv) \
  749. cunpack(texture(sampler,uv).r)
  750. #else
  751. #define textureUI(sampler,uv) \
  752. vec4(texture(sampler,uv))/vec4(65535.)
  753. #endif
  754. vec4 texture1(vec2 uv){
  755. if(TexIsUI!=0){ vec4 c=textureUI(TexColorUI,uv); return c; }
  756. return texture(TexColor,uv);
  757. }
  758. vec4 texture2(){
  759. if(Tex2IsUI!=0){ vec4 c=textureUI(TexColorUI2,gl_FragCoord.xy); return c; }
  760. return texelFetch(TexColor2,ivec2(gl_FragCoord.xy),0);
  761. }
  762. void main(){
  763. vec4 color=vec4(1,0,1,1);
  764. if(TextureMode==0){ color = fColor; if(UseHalftone>0.) color.a=HalftoneSingle(color.a,htsize,rad(7.),0.); }
  765. else if(TextureMode==1){color = vec4(fColor.rgb,fColor.a*texture1(fUV.st).r);}
  766. else if(TextureMode==2){
  767. color=texture1(fUV.st);
  768. if(MultiplyColor!=0){color*=fColor;}
  769. }else if(TextureMode==3){
  770. color=vec4(0,0,0,0);
  771. ivec2 texSize = textureSize(TexColorMS);
  772. for(int i=0;i<SampleAmount;i++){ vec4 res=texelFetch(TexColorMS, ivec2(fUV * vec2(texSize)),i); if(res[0]>-1e19) color+=res; };
  773. color/=float(SampleAmount);
  774. if(MultiplyColor!=0){color*=fColor;}
  775. }else if(TextureMode==4){
  776. color=vec4(1,0,1,1); //deprecated
  777. }else if(TextureMode==5){
  778. vec4 color1=texture1(fUV.st); if(MultiplyColor!=0){color1*=fColor;}
  779. vec4 color2=texture2();
  780. if(TexPremultiplied!=0){
  781. color = color1+color2*(1.0-color1.a);
  782. }else{
  783. color.rgb=color1.rgb*color1.a+color2.rgb*(1.-color1.a);
  784. color.a=color1.a+(1.-color1.a)*color2.a;
  785. }
  786. }else if(TextureMode==6){
  787. vec4 color1=texture1(fUV.st); if(MultiplyColor!=0){color1*=fColor;}
  788. vec4 color2=texture2();
  789. if(TexPremultiplied==0){ color1=vec4(color1.rgb*color1.a,color1.a); color2=vec4(color2.rgb*color2.a,color2.a); }
  790. color = color1+color2;
  791. if(TexPremultiplied==0){
  792. color1=(color1.a!=0.)?vec4(color1.rgb/color1.a,color1.a):vec4(0.,0.,0.,0.);
  793. color2=(color2.a!=0.)?vec4(color2.rgb/color2.a,color2.a):vec4(0.,0.,0.,0.);
  794. }
  795. }else if(TextureMode==101){ // YUYV
  796. ivec2 tsize = textureSize(TexColor,0);
  797. vec2 pixel = fUV.st * vec2(tsize);
  798. ivec2 tpixel = ivec2(pixel);
  799. vec4 yuyv = texture(TexColor,fUV.st); //texelFetch(TexColor,tpixel,0);
  800. vec3 yuv; yuv.yz=yuyv.yw;
  801. if(fract(pixel.x)<=1.){ yuv.x=yuyv.x; }else{ yuv.x=yuyv.z; }
  802. color=vec4(YUV2sRGB(yuv),1.0f);
  803. if(MultiplyColor!=0){color*=fColor;}
  804. }else if(TextureMode==102){ // UYVY
  805. ivec2 tsize = textureSize(TexColor,0);
  806. vec2 pixel = fUV.st * vec2(tsize);
  807. ivec2 tpixel = ivec2(pixel);
  808. vec4 uyvy = texture(TexColor,fUV.st); //texelFetch(TexColor,tpixel,0);
  809. vec3 yuv; yuv.yz=uyvy.xz;
  810. if(fract(pixel.x)<=1.){ yuv.x=uyvy.y; }else{ yuv.x=uyvy.w; }
  811. color=vec4(YUV2sRGB(yuv),1.0f);
  812. if(MultiplyColor!=0){color*=fColor;}
  813. }
  814. if(UseNormal!=0){
  815. color.a=HalftoneSingle(color.a,htsize,rad(7.),0.);
  816. if(color.a==0.) discard;
  817. float light_factor=dot(fNormal,vec3(0,0,1));
  818. vec3 vd=uViewDir;
  819. if(length(uViewDir)<0.5){ vd=fGPos-uViewPos; }
  820. float view=dot(fNormal,vd);
  821. float factor=abs(light_factor);
  822. if(light_factor*view>0.){ factor=0.; }
  823. color=vec4(color.rgb*mix(0.2,1.,factor),color.a);
  824. vec3 oNormal=fNormal; if(view<0.){ oNormal=-fNormal; }
  825. outNormal = oNormal;
  826. }
  827. color=ConvertColorSpace(color); color.a=clamp(color.a,0.,1.);
  828. if(Composing!=0){
  829. if(color.rgb!=vec3(0,0,0)){
  830. //vec3 cl=srgb_to_okhsl(color.rgb);
  831. //cl.z=cl.z/1.0f*(1.0f-ComposingBlackpoint)+ComposingBlackpoint;
  832. //cl.z=pow(cl.z,ComposingGamma);
  833. //color.rgb=okhsl_to_srgb(cl);
  834. color.rgb=pow(color.rgb,vec3(ComposingGamma,ComposingGamma,ComposingGamma));
  835. color.r=color.r/1.0f*(1.0f-ComposingBlackpoint)+ComposingBlackpoint;
  836. color.g=color.g/1.0f*(1.0f-ComposingBlackpoint)+ComposingBlackpoint;
  837. color.b=color.b/1.0f*(1.0f-ComposingBlackpoint)+ComposingBlackpoint;
  838. }else{
  839. color.rgb=vec3(ComposingBlackpoint,ComposingBlackpoint,ComposingBlackpoint);
  840. }
  841. }
  842. if(UseLut!=0){
  843. color.rgb = texture(TexLut,color.bgr*vec3(32.0/33.0)+vec3(1.0/64.0)).rgb;
  844. }
  845. if(UseHalftone>1e-6){ color=mix(color,halftone(color),UseHalftone); if(color.a==0.0) discard; }
  846. outColor = color;
  847. outGPos = fGPos;
  848. })";
  849. extern "C" const char* LA_OBJECT_FRAGMENT_SHADER = TNS_SHADER_VERSION R"(
  850. precision highp float;
  851. uniform int UseNormal;
  852. uniform float UseHalftone;
  853. uniform float HalftoneSize;
  854. uniform vec3 uObjectPos;
  855. uniform vec3 uViewPos;
  856. uniform vec3 uViewDir;
  857. in vec4 fColor;
  858. in vec2 fUV;
  859. flat in vec3 fNormal;
  860. in vec3 fGPos;
  861. layout(location = 0) out vec4 outColor;
  862. layout(location = 1) out vec3 outNormal;
  863. layout(location = 2) out vec3 outGPos;
  864. #with TNS_SHADER_COLOR_COMMON
  865. #with TNS_SHADER_LIBRARY
  866. void main(){
  867. vec4 color=fColor;
  868. {
  869. #with TNS_SHADER_MATERIAL
  870. }
  871. if(UseNormal!=0){
  872. color.a=HalftoneSingle(color.a,htsize,rad(7),0);
  873. if(color.a==0) discard;
  874. float light_factor=dot(fNormal,vec3(0,0,1));
  875. vec3 vd=uViewDir;
  876. if(len(uViewDir)<0.5){ vd=fGPos-uViewPos; }
  877. float view=dot(fNormal,vd);
  878. float factor=abs(light_factor);
  879. if(light_factor*view>0){ factor=0; }
  880. color=vec4(color.rgb*mix(0.2,1.,factor),color.a);
  881. vec3 oNormal=fNormal; if(view<0){ oNormal=-fNormal; }
  882. outNormal = oNormal;
  883. }
  884. if(UseHalftone>1e-6){ color=mix(color,halftone(color),UseHalftone); }
  885. outColor = color; outGPos = fGPos;
  886. })";
  887. extern "C" const char* LA_FLOOR_VERTEX_SHADER = TNS_SHADER_VERSION R"(
  888. precision highp float;
  889. uniform mat4 mProjection;
  890. uniform mat4 mModel;
  891. uniform mat4 mView;
  892. in vec4 vVertex;
  893. in vec4 vColor;
  894. out vec3 fGPos;
  895. out vec4 fColor;
  896. void main(){
  897. gl_Position=mProjection * mView * mModel * vVertex;
  898. fGPos=vec3((mModel * vVertex).xyz);
  899. fColor=vColor;
  900. })";
  901. extern "C" const char* LA_FLOOR_FRAGMENT_SHADER = TNS_SHADER_VERSION R"(
  902. precision highp float;
  903. uniform vec3 uViewPos;
  904. uniform float uFar;
  905. in vec4 fColor;
  906. in vec3 fGPos;
  907. layout(location = 0) out vec4 outColor;
  908. void main(){
  909. float fac=1.-pow(clamp(length(uViewPos-fGPos)/uFar,0.,1.),0.4);
  910. outColor=vec4(fColor.rgb,fColor.a*fac);
  911. })";
  912. extern "C" const char* LA_RAY_VERTEX_SHADER = TNS_SHADER_VERSION R"(
  913. precision highp float;
  914. in vec3 vUV;
  915. in vec4 vVertex;
  916. out vec3 fViewDir;
  917. void main(){
  918. gl_Position=vVertex;
  919. fViewDir = vUV;
  920. })";
  921. extern "C" const char* LA_SHADER_LIB_FXAA = R"(
  922. #define DIFF_LUM_ABS_HOLD 0.0833
  923. #define DIFF_LUM_RES_HOLD 0.166
  924. float luminance(vec3 col) {
  925. return dot(col, vec3(0.2126729f, 0.7151522f, 0.0721750f));
  926. }
  927. vec4 fxaa(in sampler2D tex, vec2 uv, vec2 texsize) {
  928. vec3 e = vec3(-1., 1., 0.);
  929. vec2 offuv = uv;
  930. vec3 colnw = texture(tex, uv + e.xy / texsize).rgb;
  931. vec3 coln = texture(tex, uv + e.zy / texsize).rgb;
  932. vec3 colne = texture(tex, uv + e.yy / texsize).rgb;
  933. vec3 colw = texture(tex, uv + e.xz / texsize).rgb;
  934. vec4 colm4 = texture(tex, uv + e.zz / texsize);
  935. vec3 colm = colm4.rgb;
  936. vec3 cole = texture(tex, uv + e.yz / texsize).rgb;
  937. vec3 colsw = texture(tex, uv + e.xx / texsize).rgb;
  938. vec3 cols = texture(tex, uv + e.zx / texsize).rgb;
  939. vec3 colse = texture(tex, uv + e.yx / texsize).rgb;
  940. float lnw = luminance(colnw), ln = luminance(coln), lne = luminance(colne),
  941. lw = luminance(colw), lm = luminance(colm), le = luminance(cole),
  942. lsw = luminance(colsw), ls = luminance(cols), lse = luminance(colse);
  943. float maxl = max(ln, max(ls, max(lw, max(le, lm))));
  944. float minl = min(ln, min(ls, min(lw, min(le, lm))));
  945. float diff = maxl - minl;
  946. if (diff < max(DIFF_LUM_ABS_HOLD, DIFF_LUM_RES_HOLD * maxl)) return colm4;
  947. float filterfactor = 0.;
  948. filterfactor += 2. * (ln + lw + ls + le) + lnw + lne + lsw + lse;
  949. filterfactor /= 12.;
  950. filterfactor = abs(filterfactor - lm);
  951. filterfactor = clamp(filterfactor / diff, 0., 1.);
  952. float blend = smoothstep(0., 1., filterfactor);
  953. blend *= blend;
  954. float hedge = 2.*(ln + ls - 2.*lm) + (lne + lse - 2.*le) + (lnw + lsw - 2.*lw);
  955. float vedge = 2.*(le + lw - 2.*lm) + (lne + lnw - 2.*ln) + (lse + lsw - 2.*ls);
  956. float ish = step(vedge, hedge);
  957. float psoff = ish >= 1.0 ? 1./texsize.y : 1./texsize.x;
  958. float pleft = ish >= 1.0 ? ln : le;
  959. float pright = ish >= 1.0 ? ls : lw;
  960. if (abs(pleft - lm) < abs(pright - lm)) psoff = -psoff;
  961. if (ish >= 1.0) { offuv.y += psoff * blend; }else{ offuv.x += psoff * blend; }
  962. return vec4(texture(tex, offuv).rgb,colm4.a);
  963. })";
  964. extern "C" const char* LA_RAY_FRAGMENT_SHADER = TNS_SHADER_VERSION R"(
  965. precision highp float;
  966. uniform vec3 uViewDir;
  967. uniform vec3 uViewPos;
  968. uniform float uFOV;
  969. in vec3 fViewDir;
  970. uniform highp sampler2D TexColor;
  971. uniform highp sampler2D TexNormal;
  972. uniform highp sampler2D TexGPos;
  973. #with LA_SHADER_LIB_FXAA
  974. out vec4 outColor;
  975. void main(){
  976. float d=dot(uViewDir,normalize(fViewDir));
  977. float target=cos(uFOV/2.);
  978. vec4 color=vec4(1.,1.,1.,1.); float mul=0.;
  979. //if(d<(target+0.005)&&d>target) mul=1.0;
  980. vec2 uv=gl_FragCoord.xy/vec2(textureSize(TexColor,0));
  981. vec4 buffer_color=fxaa(TexColor,uv,vec2(textureSize(TexColor,0)));
  982. //vec4 buffer_color=texture(TexColor,uv);
  983. outColor = mul*color+buffer_color;
  984. })";
  985. extern "C" const char* LA_SCENE_VERTEX_SHADER = TNS_SHADER_VERSION R"(
  986. precision highp float;
  987. uniform mat4 mProjection;
  988. uniform mat4 mModel;
  989. uniform mat4 mView;
  990. uniform mat4 mShadow;
  991. in vec4 vVertex;
  992. in vec4 vColor;
  993. in vec4 vNormal;
  994. in vec2 vUV;
  995. out vec4 fColor;
  996. //out vec4 fNormal;
  997. out vec2 fUV;
  998. out vec4 fGPos;
  999. void main(){
  1000. gl_Position= mProjection * mView * mModel * vVertex;
  1001. fUV=vUV;
  1002. //fNormal=vNormal;
  1003. fColor=vColor;
  1004. fGPos= mShadow * mModel * vVertex;\
  1005. })";
  1006. extern "C" const char* LA_SCENE_FRAGMENT_SHADER = TNS_SHADER_VERSION R"(
  1007. precision highp float;
  1008. uniform highp sampler2D TexColor;
  1009. uniform highp sampler2DMS TexColorMS;\
  1010. uniform int TextureMode;
  1011. uniform int SampleAmount;
  1012. uniform int MultiplyColor;
  1013. in vec4 fColor;
  1014. //in vec4 fNormal;
  1015. in vec2 fUV;
  1016. in vec4 fGPos;
  1017. out vec4 outColor;
  1018. vec4 GetTexture(vec2 uv){
  1019. vec4 color=vec4(1,0,1,1);
  1020. if(TextureMode==1 || TextureMode==2){ return texture(TexColor,uv); }
  1021. else if(TextureMode==3){
  1022. ivec2 texSize = textureSize(TexColorMS);
  1023. for(int i=0;i<SampleAmount;i++) color+=texelFetch(TexColorMS, ivec2(fUV * vec2(texSize)),i);
  1024. color/=float(SampleAmount);
  1025. if(MultiplyColor!=0){color*=fColor;}
  1026. return color;
  1027. }
  1028. else return vec4(1,0,1,1);
  1029. }
  1030. float GetShadow(vec4 GPos){
  1031. vec3 projCoords = GPos.xyz / GPos.w;
  1032. projCoords = projCoords * 0.5 + 0.5;
  1033. float closestDepth = GetTexture(projCoords.xy).r;
  1034. float currentDepth = projCoords.z;
  1035. float shadow = currentDepth > (closestDepth+0.001) ? 0.5 : 1.0;
  1036. return shadow;
  1037. }
  1038. void main(){
  1039. outColor=GetShadow(fGPos)*fColor;
  1040. })";
  1041. extern "C" const char* LA_CASCADE_SHADOW_VERTEX_SHADER = TNS_SHADER_VERSION R"(
  1042. precision highp float;
  1043. in vec4 vVertex;
  1044. uniform mat4 mModel;
  1045. uniform mat4 mShadow;
  1046. void main(){
  1047. gl_Position=mShadow*mModel*vVertex;
  1048. })";
  1049. extern "C" const char* LA_CASCADE_SHADOW_FRAGMENT_SHADER = TNS_SHADER_VERSION "\n \
  1050. precision highp float;\nvoid main(){gl_FragDepth = gl_FragCoord.z;}";
  1051. extern "C" const char* LA_SELECTION_VERTEX_SHADER = TNS_SHADER_VERSION R"(
  1052. precision highp float;
  1053. in vec4 vVertex;
  1054. in vec3 vColor;
  1055. uniform mat4 mProjection;
  1056. uniform mat4 mModel;
  1057. uniform mat4 mView;
  1058. uniform int DoOffset;
  1059. flat out vec3 fIdColor;
  1060. void main(){
  1061. vec4 pos = mProjection * mView * mModel * vVertex;
  1062. if(DoOffset!=0){ pos.xyw*=1.00005; }
  1063. gl_Position = pos;
  1064. fIdColor = vColor;
  1065. })";
  1066. extern "C" const char* LA_SELECTION_FRAGMENT_SHADER = TNS_SHADER_VERSION R"(
  1067. precision highp float;
  1068. flat in vec3 fIdColor;
  1069. out vec4 outColor;
  1070. void main(){
  1071. outColor=vec4(fIdColor,1.);
  1072. })";